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STATISTICAL SIGNIFICANCE AND BASELINE MONITORING

By

* Raymond W. Alden*

INTRODUCTION

7Scientists developing environmental monitoring programs must consider

the ultimate question: Has a significant impact occurred? This question

represents a primary concern of environmentalists and regulatory agencies

alike. Therefore, the investigator must design baseline and trend assess-

ment studies in such a way as to allow detection of environmental impacts.

However, to properly address this question the investigator should have a

basic definition of a wsignificant"' impact. Typically, it is approached as

two ompnens: ) Wat s astaistcalimpact? and 2) What is an eco-

lgclimpact? In order for an impact to be considered ecologically sig-

nificant, it really should be statistically significant. However, the con-

verse is not necessarily true. In fact, it would be desirable to design a

monitoring program which would allow the statistical detection of ecological

changes before they become critical.

--e-preset-sttidy offers strategies for defining statistical impacts

for an environmental monitoring program. Specifically, a series of sta-

~ V tistical techniques have been developed to estimate dminimum detectable

impacts" (MD Is) for variables examined during the baseline phase of a moni-

toring program at an open ocean dredged material disposal site. The MD~s

are dependent upon natural spatiotemporal variability of baseline datai and

the intensity of the monitoring effort. ( -

*Director, Applied Marine Research Laboratory, Old Dominion University,
Norfolk, Virginia 23508.



EVALUATION AND DISCUSSION OF METHODS

MDIs of Single Samples

One of the most basic topics which may be considered concerns how dif-

ferent a single sample must be before a statistically significant impact can

be inferred. Green (1979) considers a number of statistical methods for

evaluating environmental data. One approach which Green suggests to detect

statistically significant outliers involves the evaluation of the samples

against the context of the variance-covariance relationships of the baseline

data set. The method involves the use of a chi-square ( X2 ) test of a

sample of variables employing the following equation:

X2 (pdf) = (Xj - j) D-1 (X. -1j) (1)

where X. is the value of the new observation; Ai is the mean or expected
, .th

value of the j variable, and D is the variance-covarience matrix.

If the sample being tested is sufficiently divergent from the original

data set, equation (1) will produce a x2  value greater than the critical

test level for p degrees of freedom. This equation can also be used to

predict the MDI levels for single samples.

A computer program was developed to add or subtract factors (i.e. small

percentages of the means) incrementally to the means of each variable. This

program was coupled with the x2  test (equation 1) to evaluate iteratively

the effects of increasing or decreasing the values of each variable. Each

variable was evaluated sequentially, with all other variables remaining

constant and equal to the means. The factors were changed incrementally for

'- ' the variable being tested until a significant x2 value was attained. The

2



values of the factors which just produced significant X2  values for each

variable were considered to be the MDI levels.

To provide an example of how this method may be used, a subset of data

from a baseline water quality monitoring program at a potential open ocean

dredged material disposal site was subjected to the MDI evaluation process.

Data from two cruises taken in late summer (August) and early autumn (Oc-

tober) were selected from a three year baseline program (1981-1983). These

data would be expected to exhibit the sort of natural spatiotemporal vari-

ability which may be observed for any given seasonal period. The means, the

values of the simulated "impacted" sample, and the MDI factors estimated for

each of the water quality variables are presented in Table I. Parameters

which may be expected to decrease when impacted by dredged material disposal

.. operations (e.g. dissolved oxygen, pH, plant pigments) had the factors sub-

tracted from the means, while those which would be expected to increase had

the factors added.

Although there was a fairly wide range of MDI levels, from 5% to over

400%, none of the "impacted" values were at a level considered to be ex-

tremely harmful ecologically. The parameters with the greatest relative

MDIs were the ones which were found at extremely low levels, often near

detection limits. Therefore, the absolute concentrations of the "impacted"

V... samples, although significantly different from the baseline means, were

still moderately low. In fact, few of the "impacted" values fell outside of

the natural range reported by Kester and Courant (1973) for estuarine Chesa-

peake Bay waters, and none approached the water quality criteria or refer-

ence levels recommended by state and federal agencies for the protection of

marine life, or the prevention of eutrophication (Virginia State Water

Control Board, 1976). Thus, the approach allowed the detection of a

3



Table I. Results of MDI analysis for single samples. Means, standard errors, estimated

values of the "impacted" sample and VD1 levels are presented for each

parameter.

STANDARD "IMPACTED" M.D.I.

VARIABLE UNIT MEAN ERRORS VALUE (% OF MEAN)

Dissolved Oxygen mg/l 8.78 0.21 6.15 - 30

pH -- 7.85 0.01 7.46 - 5

C.O.D. mg/i 30.60 1.49 7.46 +105

Turbidity NTU 1.40 0.10 2.03 +145

Nitrate-Nitrite Pg/l 0.30 0.07 1.53 +410

Orthophosphate mg/i 0.002 0.0005 0.009 +352

Total Phosphorus mg/l 0.009 0.002 0.035 +290

TKN mg/l 0.133 0.005 0.259 + 95

Ammonia mg/l 0.092 0.005 0.212 +130

Suspended Solids mg/l 12.01 0.59 22.22 4 85

Volatile Nonfilterable Residue mg/l 3.29 0.21 6.91 +110

Chlorophyll a mg/l 4.31 0.14 3.88 - 10

Chlorophyll a (corrected) mg/i 4.25 0.15 3.61 - 15

Chlorophyll b mg/l 0.51 0.02 0.18 - 65

Chlorophyll c mg/l 2.19 0.09 1.31 - 40

Phaeophytin mg/l 0.28 0.06 0.88 +215

4
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statistically significant impact at a level below that which may be of acute

ecological significance. Of course, this is the desired situation if the

trend assessment is to act as an "eal warning system" for the detection of

an impact before the environment deteriorates excessively.

It is anticipated that during the major environmental perturbation more

than one variable is impacted. The amount of change in a given variable

required for statistical detection would then be expected to be considerably

less. An empirical examination of the same data base was tested with

various impact levels being introduced. Each testing series consisted of

the evaluation of data sets for which the values of various combinations of

* variables were changed by factors from 10% to 100% of the MDI levels.

Series were tested for 1, 2, 3, 4, 5, 10 and 16 variables being changed at

the same time. For the series involving 1, 2, and 16 variables, all possible

combinations were tested at each impact level. Since the numbers of permu-

tations of variables in the other series were too l arge to allow the exam-

ination of all combinations, ten randomly selected combinations were tested.

The mean x2  values for each impact level tested for each series are

& presented in Figure 1. The most obvious trend is that, the more variables

being changed, the smaller the impact required for any given variable to

produce a statistically significant x2 value. In fact, for virtually all

cases involving impacts to multiple variables, changes much greater than 60%

of the MDI produce signficant x2 values. On the other hand, tests involv-

ing impacts of 30% of the MDI or less do not produce significant x2

values, even when all variables are involved. Therefore, the MDI factors

are conservative estimates of statistically significant impacts which appear

to be within a range of two to three times the levels causing an impact when

more than one variable is affected.

4.'. 5



Figure 1. Mean x2 value versus the percent of the MDI's for a series of
emperical tests. The data points for series involving 1, 2 and
16 variables being impacted at once represent the means of all
possible combinations, while those for the other series (3, 4, 5

" and 10 variables impacted at once) represent the means of tests
of ten randomly selected combinations for each impact level.
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MDIs For Data Sets

The most commnon circumistances for the examination of data for impacts

involves the collecti n of multiple samples in a trend assessment study.

Therefore, it is desirable to develop statistical models for the evaluation

of entire past-impact data set (e.g. water quality data from a cruise taken

after a disposal site becomes active).

Multivariate statistical models are very useful in the determination of

patterns in baseline data, as well as in the detection of impacts in trend

assessment data (Alden et al., 1982). Such tests provide a single answer

concerning the data set and avoid the multiple tests required by the uni-

variate approach. Multiple univariate tests in the context of a monitoring

program mean that numerous false alarms (i.e. Type I errors) crop up over

time by chance alone. Therefore, the models for post-impact data sets are

based upon various multivariate statistical approac hes.

Statistical models for trend assessment studies may fall into several

major categories: baseline, seasonal, and seasonal-area interaction con-

trasts. The baseline contrast models evaluate differences between the data

yfrom a post-impact collection and the entire baseline data set. The season-

al models compare the post-impact data with data collected during the same
season under baseline conditions. The seasonal models are generally more

sensitive than the baseline models because natural season to season vari-

ations are not included in the error terms of the seasonal contrasts.

V The approach which is potentially the most sensitive at detecting

impacts, involves the seasonal-area interaction models. This type of model

assumnes tha;t there is an area which, during the post-impact period, exhibits

conditions which would be identical to those in the impacted area, if a

Tperturbation had not occurred. Therefore, seasonal and aperiodic temporal

7



variations are "filtered out" statistically before impacts are evaluated.

Green (1979) describes various aspects of these models in detail.

The types of effects schematically tested in a seasonal-area inter-

action best approach the study of an open ocean disposal site (The Norfolk

Disposal Site - "NDS") (Figure 2). Effect 1 represents the comparison

between water quality at the disposal site and that of surrounding waters.

Effect 2 is the difference between surface and bottom water samples. The

third effect is the expected seasonal change. The fourth and fifth effects

are the responses of interest: those impacts caused by disposal operations

at the site. By correcting for Effects 1-3 prior to the statistical evalu-

ation of impact effects, much of the natural spatiotemporal variations can

. be eliminated from the analysis.

As with the case of the single sample, the MDI's for data sets are

expressed as the factors which just produce statistically significant

results in post-impact data sets. The MDIs are proportions of the means of

the variables which may be positive (for enhancement) or negative (for in-

hibition), depending upon the expected responses to the disposal operations.

Factors are added iteratively to the variables in the unimpacted data set

until a statistically significant test criterion results for each.

Two groups are compared with the baseline and seasonal models: the

reference or control groups, and the "impacted" data set. Therefore, the

MDIs for the variables are based upon the F-value from a single classifi-

cation ANOVA model for unequal sample sizes. The F-value test criterion is

defined as:

F [1,n-a] (SSG (a-I)) + MSw  (2)

8
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- ~ Figure 2. Schematic presentation of the effects tested in seasonal-area
interaction models. The inner circles represent data from the
disposal site, while the other circles represent the "control"
data from surrounding areas. The solid line circles represent

V surface water data, while the broken line circles represent
bottom water data. The arrows represent effects being tested.
(See text for more detailed explanation).
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where n is the total number of samples, a = 2 for the two groups, and

MSw is the variance of the groups. SSG is the sum of the squares for

groups, and is defined as:

SS = (((fB)2XRB ((fA)2XRAAR)+(TAXRA)) 2 (RB+RA)) (3)

where X B and X A are the mean values for variables in the before and

after data, respectively, and RB  and RA are the number of replicates in

the two sets. The -B is calculated for the seasonal or baseline data set,

while the XA is the mean for a data set to which the incremented factors

have been added iteratively until a significant F-value is produced.

The method for calculating the MDIs for a season-area interaction model

is somewhat more complicated, but is based upon a similar approach. Green

(1979) presents a method for the determination of the number of replicates

required in a sampling regime to statistically detect a given level of

change in the variables- between a "control" and an "impacted" area. The

method for determining MDIs essentially examines the converse of this situ-

ation: the level of a statistically significant "impact" is determined for

a given sampling regime (known number of replicates) and a predetermined

Jlevel of spatiotemporal variability. Using the terms employed by Green

(1979) and omitting several steps, the test criterion for the interaction

effect is:

F[,e(R-)] = SSINT MSw = ((((ZACxRAC)+(ZBIxRBI) )- ((ZBCxRBC)(zAIxRAI))) 2

* (RAc+R BI +R BcSAI)) S (4)

10
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where SSIN T  is the interaction sum of squares; MSw  is the error or with-

in group mean square which is assumed to be equal to S2, the variance of

the groups; ZBC, ZBI' ZAC, and ZAI are the means for the control and

impact areas before and after perturbation; and RBC, RBI, RAC and RAI
are the replicates for the various groups. Green assumed that Z = Z =

BC BI
ZAC, and that ZAI = ZBI - (impact factor); the variance term for all groups

equaled S2; and the number of replicates R, the term for which he solved

for, was equal in all groups.

The mean value in the MDI method for each gr(.p as well as a pooled

variance term is calculated. The actual number of replicates for each group

is also used. Since MDIs are calculated prior to an actual impact, ZAC

A. ZAI, so an "impact" is introduced: ZAI* = ZAI + (ZAI x impact factor).

The Z AI values are adjusted by incremental changes in the impact factor

until a significant F-value is produced through interactive tests employing

equation 4. When a significant interaction term is produced, the impact

factor becomes the MDI for the variable being tested. The computer program

for evaluating MDI's accepts data sets from the disposal site and surround-

ing water from two seasons and sequentially evaluates the variables to pro-

duce a MDI value for edch. Thus, a data set with a great deal of natural

spatiotemporal variations and relatively low level of replication will

necessitate a greater level of change before statistical significance is

achieved (i.e. a set of larger MDI values is produced).

The MDI values for the baseline, seasonal and seasonal-area interaction

models ,"or data from two (August and October) water quality cruises taken as

part of a baseline monitoring cruise to the Norfolk Disposal Site are pre-

sented in Table I. In general, the MDI values for the variables under the

baseline model are greater than those for the seasonal model, which, in

% %

i" 11
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Table II. Results of MDI analysis for baseline, seasonal and seasonal-area
interaction models.

PREDICTED MDI'S (% OF MEANS)

SEASON-AREA
PARAMETER BASELINE SEASONAL INTERACTION

Dissolved oxygen -30% -30% -15%
pH -5% -5% -5%
Chemical Oxygen Demand 25% 25% 25%
Turbidity 120% 120% 120%
Nitrate-Nitrite 325% 210% *
Orthophosphate 800% 400% 200%
Total Phosphorous <3000% <3000% 200%
Total Kjeldahl Nitrogen 230% 10% 5%
Ammonia 60% 45% 35%
Suspended Solids 15% 10% 15%
Volatile Nonfilterable Residue 15% 15% 10%
Chlorophyll a -25% -20% -25%
Chlorophyll a (corrected) -25% .- -25% -25%
Chlorophyll b -45% -15% -15%
Chlorophyll c -40% -5% -5%
Phaeophytin 700% 300% 111%

*At least one group of values in the model were all below detection limits.

4w
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turn, are larger than those for the seasonal-area interaction model. The

pattern is especially apparent for the parameters which display the greatest

variability, and thus have the greatest MDI levels. This trend is obviously

due to the fact that more of the spatiotemporal variability is accounted for

by the interaction model. Howinver, the greater degrees of freedom in the

baseline model and, to a lesser extent, in the seasonal model partially

offset this pattern. The trend would be greater if year-to-year variations

are included (i.e. the evaluation of two years of baseline data, or the data

from the same seasonal period on different years). The seasonal-area model

accounts for this source of variation as long as a natural change does not

*occur in one of the areas that is not also taking place in the other. Pre-

sumably, the amount of added variation observed in a continuing baseline

monitoring program would become somewhat asynptotic over time, so the MDI

levels should stabilize. This trend would be useful to analyze in order to

determine the level of effort required to "get a handle" on natural spatio-

temporal variability prior to trend assessment studies. Graphically or

statistically relating the MDI values to the cumulative sampling effort

(e.g. the period, numnber of cruises or the number of samples in the data

set) may provide useful insight into the design of effective baseline pro-

grams. Of course, long-term natural trends (e.g. regional degradation in

water quality over decades) would tend to confound these findings.

Empirical Tests of M Levels with Multivariate Models

Multivariate statistical techniques have been employed to characterize

spatiotemporal water quality patterns of an ocean disposal site under base-

line conditions (Alden et al., 1982). Similar methods can be employed in

13
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environmental monitoring studies to confirm the MDI levels during the base-

line phase and, ultimately, to detect significant environmental impacts

during the trend assessment phase. The techniques employed include princi-

pal components analysis (PCA), discriminant analysis, and multivariate

analysis of variance (MANOVA). For demonstration purposes, the seasonal MDI

* levels presented in Table II will be evaluated using each of these tech-

niques.

Green (1979) presents a method for assessing environmental impacts

based upon a PCA of baseline data. Axes representing the first two factors,

which account for most of the variance in the data, are plotted on a graph

and a probability ellipse is calculated. The probability ellipse for any

desired alpha level defines the boundary between a region of data points

considered to be statistically similar to the baseline data and those con-

sidered to represent a significant impact. The PCA scores for each new

sample or set of samples are calculated and evaluated with respect to the

ellipse.

The means of various data sets plotted in relation to a probability

ellipse defined by the set of baseline data from the Norfolk Disposal Site

monitoring program are presented in Figure 3. The sets evaluated include

data from the August and October cruises, as well as the October disposal

site data which has been adjusted by factors of 50%, 100%, 200%, 300%, 500%,

600% and 700% of the estimated MDI values for each variable. The mean

values of the simulated data sets do not exceed the 99% probability region

until changed by factors of over seven times the MDI levels. The method

appears to be quite insensitive to changes in the data. However, this is

not too surprising since PCA tends to emphasize the patterns of variability

14



Figure 3. Mean values of standardized Principal Component Analysis (PCA)
scores for August and October data and simulated data sets
containing various levels of impact (50%, 100%, 200%, 300%, 500%,
600% and 700% of the MDI values for each variable) plotted on the
99% probability ellipse for the first two factQrs of a Principal
Component Analysis (PCA) of the baseline data set. The relative
loadings of the original variables on the axes are indicated.
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V.,.within the data, so any impact must be relatively l arge before it becomes

statistically significant under this model.

The PCA factors may represent combinations of variables which may be

differentially affected by any given impact scenario. For example, the

MOI's in Table II were calculated based upon the assumiption that oxygen, pH

and plant pigments would decrease following an impact, while the other vani-

ables would increase. Therefore, PCA factors loading on both "enhanced" and

"inhibited" variables would not change very readily. This is the case for

both factors (Figure 3). In addition, the relative "sensitivity' of the

model (i.e. the ease with which a change is detected) depends upon the rela-

* tive location of the season within the baseline ellipse. In other words, if

an August cruise had been impacted, it would have been detected for a far

smaller relative change from the ambient conditions. Although ths phenome-

non makes it more difficult to assess the MDI levels (which are on a rela-

tive scale) with this model, deviations in absolute concentrations of the

variables from the baseline conditions would likely be detected.

A second method involves the use of discriminant analysis in the com-

parison of "reference" with "impacted" data in either a baseline or seasonal

model. A stepwise discriminant analysis procedure such as that described by

Klecka (1975), forms a discriminant function based upon the variables which

best separate the two groups. Figure 4 and Table III present the results of

discriminant analysis of baseline and seasonal models with "impacted" data

adjusted by factors which were 0%, 50%, and 100% of the MDI levels for each

variable. Unlike the PCA models, the discriminant analyses are very sensi-

tive. Unfortunately, the discriminant techniques are actually too sensi-

tive: significant "impacts" were indicated even when none were introduced
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Figure 4. Frequency histograms of discriminant function scores for baseline
and "impacted" data: a) 0%, MDI seasonal model; b) 50% MDI
seasonal model; c) 100%, MDI seasonal model.
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Figure 4. Frequency histograms of discriminant function scores for baseline
and "impacted" data: d) 0%, baseline model; e) 50% MDI baseline
model and f) 100% MDI baseline model.
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(0% MDI) (Table III). This was also not surprising since discriminant tech-

niques emphasize differences between groups, even if they represent natural

patterns. MANOVA models can be used to parallel the discriminant methods.

A pre-.disposal versus post-disposal effect is evaluated with respect to

patterns in all variables with MANOVA techniques such as those described by

~ Hull and Nie (1981). The results of these analyses are also indicated in

Table III. Unlike the discriminant analysis, the MANOVA procedure did not

indicate significant differences (at the a = 0.01 level) between the "refer-

ence" and the 0% MDI data set for the seasonal model, although the mean of

the 0% MOI data set was significantly different from the grand mean in the

baseline model. The other "impacted" data sets (50% and 100% MDI) were

shown to be very highly significantly different from "reference" sets for

both models.

There is some question as to whether it is appropriate to utilize tests

which statistically compare the mean of a post-impact data set with that of

the total baseline or composite seasonal set. As demonstrated in Table III,

it is entirely conceivable that the mean discriminant function or canonical

variate value of data from any given cruise could be different from the

grand mean due to natural variations alone. Therefore, a second test of

significance was sought for the baseline and seasonal models.

The discriminant analysis procedure described by Klecka (1975) include

a classification probability statistic, p(x/g), which is defined as the

probability that any given case belongs to the group with which it has been

identified. The statistic is based upon a chi-square (see Figure 1):

x2 =(f-f) (D)- (f-f.) (5)
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33where f is the discriminant score of the case being tested, is the~m

mean discriminant score for the group in question and D is the variance-

covariance matrix, which reduces to the variance of scores for group j

when there is a single discriminant function. The same statistic, which is

analogous to that used by Green (1979) (equation 1) to calculate the prob-

ability ellipse, can be used to define probability limits for the discrimi-

nant scores of each group. The scores of each of the cases from the impact

data set can then be evaluated by equation 5 to determine whether they would

fall within the 99% probability limits of the baseline or seasonal "refer-

ence" data sets. This procedure was used for the data sets evaluated by the

discriminant models, (Table III). The selection of a specific cut-off cri-

terion in terms of the percentage of cases outside the probability limits

being necessary to define an "impact" is somewhat subjective. A situation

for which over 1% of the cases fall outside of the probability ellipse may

*be suspect. Once the mean discriminant function (D.F.) score of the post-

impact data falls outside of the probability region of the baseline condi-

tions, the majority of the cases in the data set are likely to do so as

well, so this criterion has been tentatively adopted in the evaluation of

MDI levels. The horizontal bars above the histograms in Figure 4 show the

relationships between the mean D.F. scores and probability limits for each

data set. As indicated by Table III, few of the 0% MDI cases fall outside

of the probability limits for the "reference" groups, while all do for the

100% MDI data set, with the 50% MDI tests exhibiting intermediate results

(e.g. 40% and 75% for seasonal and baseline models, respectively).

The MANOVA season-area interaction model essentially asks the question:
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"Are there post-impact changes at the disposal site which are not observed

* elsewhere and are not accounted for by previously observed spatial differ-

ences?" The results of the MANOVA analysis of the August, October and simu-

late data sets are also presented in Table III. For the 0% MDI data set,

the multivariate test showed no significant interaction effect (p = 0.35),

while the univariate tests of each of the variables provided by the pro-

cedure indicated that no more were significant than would be expected by

change alone, The 50% MDI data set was shown to produce a very highly sig-

nificant multivariate interaction effect, while some of the variables were

shown to be significant on their own. The interaction effect in the test of

the 100% MD! set was significant for the multivariate test and all of the

univariate tests of the individual variables. Thus, with the MANOVA inter-

action model, changes can be detected for impact levels below the predicted.5

MDI's for the multivariate approach and at levels within the range of the

expected MDI's for the univariate approach.

As with the case of the MOI's for single samples, it is conceivable, in

fact quite likely, that all variables would not be impacted at the sane

time. Therefore, it would be useful to examine the relationship between the

level of impact and the number of variables affected as they relate to the

statistical significance of the test. A graph depicting an empirical re-

lationship analogous to the one presented in Figure 1 for single samples

would be desirable, but the large numbter of MANOVA tests involved would

*prove too time-consuming and costly in terms of computer usage to allow the

evaluation of the sane number of permutations. Therefore, tests involving

various levels of impact for the extreme situations (i.e. one with a single

* impacted variable, or with all variables being impacted) were run under the

assumTption that other combinations would fall somewhere between the two

22
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curves. Figure 5 presents the results of this series of analyses, plotting

the percent of the MOI level versus the multivariate F produced by the

MANOVA procedure. The curve for the single impacted variable represents tile

means of ten tests of variables randomly selected from the data set to be

adjusted by each given impact level. As with the results from the single

* sample tests, the curves appear exponential and it would appear that most

situations involving combinations of impacted variables would require an

average level of impact of 30-40% of the MDI's in order to be detected

statistically by the MANOVA model. Although combinations of variables with

different levels of impact may complicate the situation to a degree, it

would seem intuitive that they should fall somewhere between the two empiri-

cal curves. Thus, it appears that, as for the single sample case, the pre-

dicted MDI levels represent estimators of statistically significant impacts

which are conservative, but which are within the same order of magnitude as

a change which would be detectable by a powerful multivariate statistical

test.

EVALUATION OF STATISTICAL METHODS

One potential problem with the types of multivariate statistical models

which have been described is the effect of heterogeneity of variances and

non-normality on the test results. In order to evaluate this effect, a

series of empirical tests were made utilizinq data sets simulated to match

the distribution of a highly skewed sediment grain size data set. The

method of simulation is designed to produce data sets with desired distri-

butions and various means (Alden, 1984). In the evaluation test series,

discriminant analysis and MANOVA models were used to compare four groups of

twenty cases which were simulated to have identical means (i.e. a true null
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" Figure 5. Multivariate F values versus the percent of the MDI's for a
series of empirical tests. The curve for single impacted
variables is based upon 10 tests of variables randomly selected
from the data set to be adjusted for each impact level (means
indicated by closed circles, vertical bars represent 2 standard
errors). The curve labeled 16 is for all variables being
impacted at once.

a'...e



* 0

0
WI-o 

coa

'4,. IC l)

C~j CDw 04a)

(0'B jI4I8 IjV

20



* hypothesis). Tests were run for each type of analysis on fifty independent

simulations. The nominal probability (a) values associated with the multi-

variate test statistics were then compared with the observed probability

N. levels. The latter values were calculated as the cumulative proportion of

the observations found for each nominal level.

The results of the comparisons of the observed versus nominal a

levels for the multivariate tests are presented in Figure 6. An interesting

contrast can be seen between the results of the discriminant analysis (Fig-

* ure 6 a,b) and those from the MANOVA tests (Figure 6 c). The results from

the discriminant analysis, Wilk'ns Lambda comparison of all groups and the

Mahalanobis 02 comparisons of individual pairs of groups (Klecka, 1975),

clearly indicates a nonlinear relationship between the observed and nominal

levels. Observed a values are always higher than nominal levels. Virtual-

. .,ly all nominal a levels are below 0.20. In other words, the discriminant

analysis models are overly sensitive, producing test statistics with

"significant" nominal a levels, even when no true differences exist

between the means.

On the other hand, the observed and nominal alpha levels for the MANOVA

model were nearly equal throughout the entire range, producing a linear

relationship of good fit (R2 = 0.99). Therefore, the MANOVA models appear

to produce expected results despite a great deviation from multivariate

normality. However, if the linear relationship had not crossed the origin,

the regression equation could have been used to predict the appropriate a

level for any given test statistic (e.g. an "FP value producing a nominal a

level of 0.05 may in fact be at an actual value of 0.07, etc.).

Between the results of the MDI evaluations and the simulation evalu-

ations of the statistical, it is clear that MANOVA represents a "better"

/4 statistical model than does discriminant analysis in the comparison of en-
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Figure 6. Observed versus nominal a levels for multivariate tests of data
" sets (50 runs of 4 groups each) simulated to fulfill a time null

h pothesis: a) Discriminant Wilk's Lanbda Test; b) Mahalanobis
D comparisons of individual pairs of groups; and c) MANOVA
Multivariate F Tests.
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vironmental data sets. Discriminant analysis, while being overly sensitive

as a test statistic, does have certain advantages: it can indicate which

variables are most responsible for differences between groups; and the re-

sults can be readily displayed for presentation purposes (e.g. group distri-

butions plotted on a frequency histogram of a single discriminant function,

or probability ellipses of groups plotted on a graph of the first two dis-

criminant functions). Therefore, results of a discriminant analysis may be

used for data presentation purposes, but the "signficance" of the patterns

.. should be confirmed with a MANOVA test.

.CONCLUSIONS

A series of statistical approaches have been developed for the evalu-

ation of baseline and trend assessment data. For baseline data sets, models

have been developed which allow the estimation of "Minimum Detection Limits"

for scenarios involving both single samples and entire data sets. The

levels of MDI estimated for the data set selected for demonstration purposes

indicated that the monitoring program was effective in providing an "early

warning system" for the statistical detection of impacts before they become

excessively detrimental to the environment. In fact, when more than one

variable was affected at the same time, the amount of relative change in any

given level was less (e.g. only 30-50% of MDI values for most multiple

impacts). However, if the MDI's had represented conditions which would be

considered to be damaging ecologically, models for the estimation of ap-

propriate sample size for the detection of any desired level of change (e.g.

see methods described by Sokal and Rohlf, 1969 and Green, 1979) could be

used and computer simulations of data sets with this level of replication

run with the MDI prediction methods to calculate new MDI's. Multivariate
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statistical models could be run to verify the new MDI levels.

A cost-benefit analysis could then be run to evaluate the relative

amount of effort (and resources) required to potentially detect any given

level of change (i.e. the "cost" of the various monitoring regimes could be

plotted against the predicted MDI levels for evaluation purposes). In such

an analysis, a point of "diminishing returns" could, perhaps, be observed

and the optimum regime selected. At the very least, the investigator would

be given an indication of the potential sensitivity of the regime which has

been selected.

The effectiveness of several multivariate techniques for the detection

of impacts in data from trend asssessment studies was evaluated empirically.

A PCA model proved to be not very sensitive to the detection of significant

changes, while discriminant analysis models were overly sensitive, suggest-

ing significant differences when none were present. The MANOVA techniques

proved to be the most effective, particularly when the season-area inter-

action models were used. Simulation evaluations confirmed the effectiveness

and robustness of the MANOVA models. These simulation evaluations can also

be used to define new critical test values for statistical models not ex-

hibiting the nominal a~ values, thus freeing the statistical models from

the assumiptions of multivariate normality and homogeneity.
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